Overlap of Fractional Cloud for Radiation Calculations in GCMs: A Global Analysis using CloudSat and CALIPSO Data

H. W. Barker
Environment Canada

The need to consider cloud overlap structure depends on the genre of the GCM:

Overlap of Fractional Cloud for Radiation Calculations in GCMs: A Global Analysis using CloudSat and CALIPSO Data

H. W. Barker
Environment Canada

The need to consider cloud overlap structure depends on the genre of the GCM:

- conventional GCMs: description of cloud overlap for unresolved cloud fields must be provided, via parametrization, to carry out, at least, radiative transfer calculations.

Overlap of Fractional Cloud for Radiation Calculations in GCMs: A Global Analysis using CloudSat and CALIPSO Data

H. W. Barker
Environment Canada

The need to consider cloud overlap structure depends on the genre of the GCM:

- conventional GCMs: description of cloud overlap for unresolved cloud fields must be provided, via parametrization, to carry out, at least, radiative transfer calculations.
- MMF-GCMs (global CSRMs): cloud overlap ceases to be a parametrization issue and becomes a diagnostic variable

Objectives

- make a global assessment of cloud overlap
 - using CloudSat-CALIPSO data
- estimate global-average radiative sensitivity for overlap

$$\frac{\partial F}{\partial \mathcal{L}_{cf}^*}$$

assess feasibility of a very simple overlap parametrization

Data

CloudSat-CALIPSO cloud-mask: Jan and Aug 2007

- http://cloudsat.cira.colostate.edu/data_dist/OrderData.php
- 2B-GEOPROF and 2B-GEOPROF-LIDAR
- CPR_Cloud_mask; Radar_Reflectivity; CloudFraction
 - cross-sections: 50, 100, 200, 500, and 1000 km
 - what best represents a GCM column (Astin + Di Girolamo 1999)?
 - ~37,000 columns/orbit... many thousands of samples
 - total cloud fractions ∈ [0.05, 0.99]
 - CloudSat's radar reflectivity ~ r^6 ... precipitation-mask???

precipitation-mask

"cloud" in bins 3 and 4 above the surface?

remove up to max(R) when lidar indicates no cloud

Methodology

Hogan and Illingworth (2000):

$$c_{k,l} = \alpha_{k,l} \underbrace{\max(c_k, c_l)}_{\text{maximum}} + (1 - \alpha_{k,l}) \underbrace{(c_k + c_l - c_k c_l)}_{\text{random}}$$

$$\underbrace{\text{overlap}}_{\text{overlap}}$$

$$\alpha_{k,l} \equiv \exp\left[-\int_{z_k}^{z_l} \frac{dz}{\mathcal{L}_{cf}(z)}\right] \quad \Big| \quad \mathcal{L}_{cf}(z) \in [0,\infty) \; ; \; \alpha_{k,l} \in [0,1)$$

$$c_{k,l} \in \left(\max \left(c_k, c_l \right), c_k + c_l - c_k c_l \right]$$

Effective Decorrelation Length

- assume \mathcal{L}_{cf} does not vary vertically... unique $C(\mathcal{L}_{cf})$ given cloud fraction profile
- total cloud fraction \widehat{C} from measurements
- using McICA's sub-grid cloud generator, solve:

$$C(\mathcal{L}_{cf}^*) = \widehat{C}$$

Effective Decorrelation Length

- assume \mathcal{L}_{cf} does not vary vertically... unique $C(\mathcal{L}_{cf})$ given cloud fraction profile
- total cloud fraction \widehat{C} from measurements
- using McICA's sub-grid cloud generator, solve:

$$C(\mathcal{L}_{cf}^*) = \widehat{C}$$

almost independent of cross-section length except for very small lengths (scale-independent parametrization?)

500 km cross-sections

January 2007

- little difference between land and ocean
- linear increase with C for small C
- peak medians of 2 to 3 km near C = 0.7

largest values in Polar areas during winter and N. Tropics during boreal summer

- sedimentation of crystals and convection?

- MMF values are very large (4 km grid-spacing vs. ~1.5 km?)
- screen for precip: minor for CloudSat, major for MMF

On the use of \mathcal{L}_{cf}^* in GCMs

- is vertically-constant sufficient?
- how to set it?... not from total cloud fraction...
- how detailed need the parametrization be?
- is it something that changes with climate?...

$$F_{\rm ICA} = \int_0^\infty p(\tau) F(\tau) \ d\tau$$

$$F_{\text{ICA}} = (1 - \widehat{C})F(0) + \widehat{C} \int_0^\infty \widehat{p}(\tau)F(\tau) d\tau$$

$$F_{\rm ICA} = (1-\widehat{C})F\left(0\right) + \sum_{m=1}^{M} \varepsilon_m \int_0^\infty \widehat{p}_m(\tau)F(\tau) \ d\tau$$
 total cloud fraction

with tops exposed to space

fraction of clouds in layer m distribution of τ for clouds in layer m with tops exposed to space

- achieving an accurate distribution of cloudtops exposed to space appears doable

(given correct cloud fraction profiles and effective decorrelation lengths)

January 2007 $C(\mathcal{L}_{cf}^* = 2 \text{ km}) - \widehat{C}$ $C(\mathcal{L}_{cf}^* = 1 \text{ km}) - \widehat{C}$ $C(\mathcal{L}_{cf}^* = 3 \text{ km}) - \widehat{C}$ prohibited area 0.5 0.5 0.5 0 -0.5 -0.5 -0.5 0.2 total cloud fraction total cloud fraction total cloud fraction

- abundant (but significant?) random noise due to global setting
 - max-rand scheme has this *noise* too
- is it necessary to reduce variance?... cf. McICA

Radiative Sensitivity for Overlap

to what extent is TOA radiation affected by overlap?...

Radiative Sensitivity for Overlap

to what extent is TOA radiation affected by overlap?...

$$F_{\text{ICA}} = (1 - \widehat{C})F(0) + \widehat{C} \int_{0}^{\infty} \widehat{p}(\tau)F(\tau) d\tau = (1 - \widehat{C})F(0) + \widehat{C}F_{\text{cld}}$$

$$\frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} = -F(0)\frac{\partial \widehat{C}}{\partial \mathcal{L}_{cf}} + F_{\text{cld}}\frac{\partial \widehat{C}}{\partial \mathcal{L}_{cf}} + \widehat{C}\frac{\partial F_{\text{cld}}}{\partial \mathcal{L}_{cf}}$$

$$\frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} \simeq CRE\frac{\partial \ln \widehat{C}}{\partial \mathcal{L}_{cf}} + \widehat{C}\left[\underbrace{\frac{\partial F_{\text{cld}}}{\partial \overline{\tau}}\frac{\partial \overline{\tau}}{\partial \mathcal{L}_{cf}}}_{<0} + \underbrace{\frac{\partial F_{\text{cld}}}{\partial \sigma_{\tau}}\frac{\partial \sigma_{\tau}}{\partial \mathcal{L}_{cf}}}_{\sim O(0)} + \cdots\right]$$

$$\left\langle \frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} \right\rangle \simeq \left\langle CRE \right\rangle \left\langle \frac{\partial \ln \widehat{C}}{\partial \mathcal{L}_{cf}} \right\rangle - O(\lesssim 1)$$

$$\simeq \left(-45 \text{ Wm}^{-2} \right) \left(-0.08 \text{ km}^{-1} \right) - O(\lesssim 1)$$

$$\simeq 3 \text{ Wm}^{-2} \text{ km}^{-1}$$

Radiative Sensitivity for Overlap

to what extent is TOA radiation affected by overlap?...

$$F_{\text{ICA}} = (1 - \widehat{C})F(0) + \widehat{C} \int_{0}^{\infty} \widehat{p}(\tau)F(\tau) d\tau = (1 - \widehat{C})F(0) + \widehat{C}F_{\text{cld}}$$

$$\frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} = -F(0)\frac{\partial \widehat{C}}{\partial \mathcal{L}_{cf}} + F_{\text{cld}}\frac{\partial \widehat{C}}{\partial \mathcal{L}_{cf}} + \widehat{C}\frac{\partial F_{\text{cld}}}{\partial \mathcal{L}_{cf}}$$

$$\frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} \simeq CRE\frac{\partial \ln \widehat{C}}{\partial \mathcal{L}_{cf}} + \widehat{C}\left[\frac{\partial F_{\text{cld}}}{\partial \overline{\tau}}\frac{\partial \overline{\tau}}{\partial \mathcal{L}_{cf}} + \frac{\partial F_{\text{cld}}}{\partial \sigma_{\tau}}\frac{\partial \sigma_{\tau}}{\partial \mathcal{L}_{cf}} + \cdots\right]$$

$$\frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} \simeq CRE \frac{\partial \ln \widehat{C}}{\partial \mathcal{L}_{cf}} + \widehat{C} \left[\underbrace{\frac{\partial F_{\text{cld}}}{\partial \overline{\tau}} \frac{\partial \overline{\tau}}{\partial \mathcal{L}_{cf}}}_{<0} + \underbrace{\frac{\partial F_{\text{cld}}}{\partial \sigma_{\tau}} \frac{\partial \sigma_{\tau}}{\partial \mathcal{L}_{cf}}}_{\sim O(0)} + \cdots \right]$$

$$\left\langle \frac{\partial F_{\text{ICA}}}{\partial \mathcal{L}_{cf}} \right\rangle \simeq \left\langle CRE \right\rangle \left\langle \frac{\partial \ln \widehat{C}}{\partial \mathcal{L}_{cf}} \right\rangle - O(\lesssim 1)$$

$$\simeq \left(-45 \text{ Wm}^{-2} \right) \left(-0.08 \text{ km}^{-1} \right) - O(\lesssim 1)$$

 $\simeq 3~\mathrm{Wm}^{-2}~\mathrm{km}^{-1}$ (LW is at least ~3 times smaller)

Conclusions + Recommendations

- 2 months of overlap analyses... more is needed
- bring in additional data (e.g., ECMWF)
- is \mathcal{L}_{cf}^* sufficient?
 - can it be as simple as a few judicious settings based on local conditions?
- assess GCMs recognizing

$$F_{\text{ICA}} = (1 - \widehat{C})F(0) + \sum_{m=1}^{M} \varepsilon_m \int_{0}^{\infty} \widehat{p}_m(\tau)F(\tau) d\tau$$

- if these are correct, so too is overlap, and your radiation budget

